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Motivation

e Difficulties in modeling discontinuous field by
FEM

e Necessity of remeshing in FEM
e High computational cost of FEM
e Low accuracy of FEM in modeling cracks



General iIdea of XFEM

e Discontinuous field U:

e XFEM mesh discretization and enriched nodes:
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General iIdea of XFEM

e Standard FEM linear interpolation functions over 1D domain:
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e Standard FEM approximation:
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General iIdea of XFEM

e Enriched basis function for a strong discontinuity in 1D
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General iIdea of XFEM

e XFEM mesh in 2D — enriched nodes
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e In this case 2 types of enrichment is used.:
Heaviside/step function in elements cut by crack

Asymptotic near-tip enrichment function for the elements
which contain crack tip



General iIdea of XFEM

e XFEM approximation in 2D domain with crack tip:
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General iIdea of XFEM

e Enriched basis for crack growth in 2D:
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Numerical Integration in XFEM

e For elements cut by the crack, modified
Integration scheme is practiced in XFEM
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Numerical Integration in XFEM

e The partitioning of an element is done only
for integration purpose and no extra degrees
of freedoms are added to the system unlike
the usual FEM

e No conditions on the shape of sub-polygons
or sub-triangles Is imposed
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Blending elements

e Domain Qg g\ p CONsist elements whose
some of the nodes are enriched and
some of them are not. As a results of o
this the enrichment function is not s
reproduced exactly in blending
elements.

e Shifted enrichment automatically
removes the enrichment from the
domain which is not required to be
enriched:
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Standard FEM Step enrichment function Neartip enrichment function
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Crack initiation and growth

e Some of the commonly used crack growth
criteria are:
Minimum strain energy density criteria
Maximum energy release rate criteria

Maximum hoop stress or maximum principal
stress criteria

Global tracking algorithm
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Crack initiation and growth

e Minimum strain energy density criteria

The crack initiation will occur when the
minimum of the strain energy density
function S reaches to some critical value S,

The crack will extend In a direction in which

strain energy density factor possess a
minimum value
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Crack initiation and growth

e The minimum strain energy density factor S is given by:
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e where K,, K, K, are the mode |, Il, Il stress intensity factors.
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Crack initiation and growth

e The direction of propagation is determined
such that:
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e It is worth mentioning that the criteria works
well for linear elastic fracture mechanics
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Updating stiffness matrix K

Constant
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Example

e [nitiation of crack in 2D Plate — ABAQUS 6-9
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Example

e Results: Enrichent functions values
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Example

e Results: Stress relaxation
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Conclusion

e Better accuracy of XFEM in comparison to
FEM

e Re-meshing is not need

e Possibility of modeling discontinuities and
singularities by XFEM

e Lower computationally cost
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Thank you for your attention
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